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Prediction of turbulent transitional 
phenomena with a nonlinear 
eddy-viscosity model 
T. J. Craft, B. E. Launder, and K. Suga 
D e p a r t m e n t  of  M e c h a n i c a l  Eng inee r i ng ,  UMIST,  Manches te r ,  Eng land  

This paper describes a new nonl inear eddy-viscosity model of turbulence designed wi th  a 
v iew to predicting f low far from equi l ibr ium, including transit ion. The scheme fol lows 
earl ier UMIST practice in adopting a cubic relation between the stress and the strain/  
vorticity tensors but broadens the range of f lows to which the model applies by including a 
third transport equation for an anisotropy parameter of the stress field. Applications are 
shown for transit ion on a flat plate at different levels of free-stream turbulence, for the 
normal impingement of a turbulent jet  on a flat plate, and for the f low around a turbine 
blade. The model is shown to generate much more realistic predictions than what  is said to 
be the best of the l inear eddy-viscosity schemes. © 1997 by Elsevier Science Inc. 
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Introduction 

It is now well established that the process of transition from a 
laminar to a turbulent boundary layer in the presence of substan- 
tial free-stream turbulence is one that lends itself better to 
prediction by "turbulence modelling" than by stability analysis. 
The first demonstration of such transition prediction was by 
C. H. Priddin (see Launder and Spalding 1974), while later 
Scheuerer (1983) reported a more extensive study. Both these 
schemes adopted standard low-Reynolds-number k - e  models. 

More recently, Savill (1993, 1995) has been coordinating a 
major (largely) European effort in establishing, conclusively, the 
strengths and weaknesses of solvers of different types in predict- 
ing the phenomenon commonly referred to nowadays as "by-pass" 
or "diffusion-controlled" transition. The series of reports spring- 
ing from that collaborative exploration make essential back- 
ground reading and cannot be summarized in a sentence or two. 
A very important development, however, has been the increasing 
tendency to start computations ahead of the solid body on which 
transition occurs--something that has become possible with the 
great increase of the core memory readily available--and the 
consequent use of elliptic (rather than parabolic) solvers. Not 
only does this mean that uncertainties in initial conditions have 
far less impact than with a parabolic solver--since inlet condi- 
tions are imposed upstream of the plate or blade on which 
transition actually occurs; it also means that the turbulence 
model has to cope with a more complex strain field than just a 
simple shear, since, in the vicinity of the stagnation point at the 
leading edge, the flow departs strongly from a simple shear. 
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(Downstream from the leading-edge region, the flow may again 
be adequately described by the parabolic equations, although, if 
the transition itself is abrupt, retention of streamwise diffusion 
may be significant in the vicinity of the transition "point" itself.) 
Both these developments have helped underline the point that 
simple two-equation eddy-viscosity schemes--for  all their attrac- 
tiveness from the point of view of economy--do not offer a 
sufficiently capacious framework to predict the physical phenom- 
ena over a useful width of conditions. 

Second-moment closures offer a far more general route, 
although, despite continuing decreases in computing cost, they 
are still seen as too complicated for routine industrial applica- 
tions. Thus, it is to nonlinear eddy-viscosity schemes that several 
groups are now looking to bring realism in computational fluid 
dynamics (CFD) predictions to engineering flows. While such 
approaches have a history of more than 20 years (Pope 1975), 
there has been a particular concentration of activity over the last 
half-dozen or so. Nearly all schemes have taken the stress pro- 
portional to quadratic products of strain and vorticity. In our 
earlier papers on this topic (Craft et al. 1993, 1996), however, it is 
pointed out that cubic-level contributions are needed to give the 
predicted stress field approximately the correct sensitivity to 
minor strains. 

In planning the extension of this earlier work to the problems 
of diffusion-controlled transition, one serious anomaly was that, 
for the case of fully developed pipe or channel flow, the model of 
Craft et al. (1996) predicted levels of the turbulence intensities 
with much too little difference among components (Figure 1). 
This failure was particularly serious for the component normal to 
the wall u, which is particularly important in determining turbu- 
lent heat fluxes (see Equation 2 below). The conclusion reached 
was that some parameter other than the turbulent Reynolds 
number was needed on which the turbulence model coefficients 
could be allowed to depend. Now, modern second-moment clo- 
sures make some of their coefficients dependent on certain of 

0142-727X/97/$ 17.00 
PII SO142-727X(96)OO145-3 



Predict ion of  turbulent  t ransi t ional  phenomena:  T. J. Craft et al. 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

2 . 0 ]  0 

1.5 

1.0 
Z~ 

0.5 ) 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
0.0 0.1 0.2 0.3 0.4 0.5 

- = ~ ~  

y/n 
Figure I Turbulence intensity profiles in fully developed 
f low in a plane channel (normalized wi th  wal l  parameters), 
Re=13,750;  symbols: DNS results, Kim (1989), ©: u', [ ]  
- w'; A - v' : predicted wi th  two-equat ion N-LEVM, Craft 
et al. (1996); . . . .  : predictions wi th  l inear EVM (all three 
intensit ies equal) 

the stress invariants (e.g., Lumley 1978; Launder and Tselepi- 
dakis 1993; Craft and Launder 1995) and a similar approach has 
therefore been adopted with our N-LEVM also. 

In the development below the following section provides a 
statement of the currently adopted model. Thereafter, considera- 
tion is first given to applications of the model not involving 
transition phenomena. (Since most transitional flows reach a 

fully turbulent state, it is essential that the model should also 
apply in that limit.) Thereafter, applications are considered in 
turn of transition on a flat plate; the turbulent impinging jet; 
and, finally, the flow around a turbine blade. The paper ends by 
considering potential for further development. 

T h e  p r o p o s e d  c l o s u r e  

To provide a full account of both the model and the rationale 
leading to particular forms would require more space than is 
available here. Such a complete presentation is provided by 
Suga's Ph.D. thesis (also available in report form, Suga 1996); it 
is hoped, therefore, that the limited account below adequately 
meets immediate needs. There are three areas where particular 
attention is needed: the basic constitutive equation for the 
Reynolds stress u~uj and the heat flux u~0; the substantially 
modified transport equation for s; and the transport equation for 
the stress-invariant, A 2. These form the subjects of succeeding 
sections. 

The cons t i tu t i ve  equat ion  for UiU j 

The following constitutive equation is adopted for the dimension- 
less anisotropic Reynolds stress tensor aij =- ~ - 2 8 i j k ) /k ,  k 
being the turbulent kinetic energy, (1/2)UkU ~. 

Pt 
aij = ~ Sij 

-[- SikSkj 3SklSkl~i j]  

v t 
-[- C2 ~" (~ ik  Skj ~- f~jk Skl ) 

~ i k ~ j k  

Notation 

aij 
A* 
,43 
A 
cf 
d+ 
D 
H 

k 

M, 
Nu 
P 
Bj, Pk 
qw 
r 

Re 

Sq 
Vk 
U~ 

normalized stress anisotropy ~ - ~S i j k ) / k  
a surrogate form of A, see Equation 8 et seq. 
aij ajk akl 
1 - (9/8XA 2 - A  3) 
skin friction coefficient 
diffusion rate of dO(rb =- k, gz,uiu j) 
diameter of impingement pipe 
boundary-layer shape factor (displacement thick- 
ness /momentum thickness) 
turbulence kinetic energy 
a length scale, Equation 9 
isotropic Mach number 
Nusselt number 
mean pressure 
shear production rate of uiu j, k 
wall heat flux (k W/ m 2) 
radius 
turbulent Reynolds number kZ/v~ 
mean flow Reynolds number UbD'/v 

dimensionless strain parameter, ( k / k ) ¢ ( 1 / 2 ) S q S j i  

mean strain-rate tensor (aUi/Ox j + oUyax  i) 
mean velocity in direction x k 
bulk velocity in pipe 

t p 
/2 ,L'  , W  

X k 
root-mean-square turbulent velocities 
Cartesian space coordinate-tensor notation (x 2 nor- 
mal to wall, x/ primary flow direction) 
Cartesian coordinate normal to wall 

Greek 

eij 
V 
V t 
+q 
0 

fi 

energy dissipation rate 
"homogeneous" dissipation rate, e 
2v(Ok l/2 / axj) 2 

viscous dissipation rate of uiu ) 
kinematic viscosity 
linear part of turbulent viscosity cgkZ/e 
pressure-strain contribution 
mean temperature 
mean vorticity tensor, [(aUi/Ox j) - (oUJOxi)] 
dimensionless vorticity parameter, 

( k / ~ ) ¢ ( l / 2 ) ~ i ) { ~  0 

Subscripts 

ex exit values 
i inlet values 
w wall values 
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vtk 
+ C4"-~'-(Ski~lj Jr Skj~'~li)Skl 

2 
Ptk ( ~ i l " lmSmj  + S i l ~ l m " m j -  ~S lm~mn"n l~ i j )  + c s ~ -  

vtk vtk 
+ C6"-~-SijSkiSkl + C7"-~Sij~'~kl~'~kl 

where 

ou, og ou, og 
- -  4- - -  ~i j  -- Sij Oxj Ox i ' Oxj Ox i 

k k k z 
=- ~ ~ / 2 ,  12=- ~ ~ j / 2  , v, =c~ T 

(1) 

and k is the so-called isotropic dissipation rate of turbulence 
energy. 

The recommended forms for the various coefficients are 
given in Table 1. The quantities /~t, ~1, and A 2 are, respectively, 
the turbulent  Reynolds number  kZ/vg:, r.qmax{S, ,O,} and the 
second invariant of the stress tensor ai]aij. Equation 1 is a subset 
of the generalized nonlinear  form given by Pope (1975). In fact, 
the terms with coefficients c 6 and c 7 are all incorporated under  
the linear term in Pope's  presentation, since, in each case, the 
strain tensor Sq multiplies invariants of the strain or vorticity 
field. Here,  we prefer to make evident the different contributions 
by separately designating the coefficients as indicated. 

The empirical coefficients are tuned by reference to a num- 
ber of fundamental  shear flows. The value of the coefficients c 2 
and (c 1 + c 3) are the only ones to affect the anisotropic normal 
stresses in a simple shear. The values given in Table 1 were 
optimized by considering both direct numerical simulation (DNS) 
and experimental data of homogeneous shear over a range of ,q 
(from 3 to 18) together with the requirement  that, no matter  how 
large S might be, negative normal stresses should not arise. 
Likewise, matching the shear stress behavior in simple shear has 
led to our taking ( - c  5 + c 6 + c 7) equal to zero. 

Further  decisions on the coefficients were taken by reference 
to curved flows. Swirling pipe flow is known to produce a markedly 
nonlinear variation of swirl velocity with radius even in fully 
developed flow (Cheah et al. 1993). Only the terms with coeffi- 
cient c 4 and c 5 can produce such a nonlinear variation; indeed 
the two terms lead to the same velocity gradient elements. By 
contrast, the sensitivity of the stress field to the effects of 
curvature strains in two-dimensional flow (2-D) (over a convex 
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surface, say) are dependent  on c 5 and c7, and, again, the form of 
the cubic terms is identical for the two terms. Thus, for the 
present, c 5 has been taken as zero leaving c 4 and c 7 to be tuned 
by reference to the above-noted flows. Finally, it is noted that c 3 
is assigned a functional form in order that, in solid-body rotation 
(where S is zero, but 1~ is not) the rotation rate should have no 
effect on the resultant stress field. 

It is perhaps not helpful to at tempt a detailed comparison 
with previous proposals for the above coefficients. Our earlier 
study (Craft et al. 1996) showed that previous proposals, based 
on quadratic strain and vorticity elements had generated such a 
diversity in magnitude and, in some cases, sign of the coefficients 
that the only conclusion we could draw was that no widely 
applicable constitutive equation could be formulated at that 
level. That  is why, in our earlier and present contributions, a 
cubic formulation has been adopted. 

Turbulent heat fluxes 

Earl ier work on nonlinear eddy-viscosity models (EVMs) has 
generally adopted the turbulent-Pandtl number approach to de- 
termine the heat flux normal to the wall. Here, however, because 
of the considerable improvement  in our ability to mimic the 
fluctuating velocity normal to the wall, the more widely applica- 
ble model of Daly and Harlow (1970) is adopted 

k 019 
~iO= - c o - u i u  j -  (2a) 

e Oxj 

If a plane wall lies in the x-z-plane,  the expression for the 
turbulent  heat flux normal to the wall is thus: 

k ~ O ®  
b-0 = - c 0 - v  - -  (2b) 

e Oy 

The form of the coefficient c o has been chosen by reference to 
the DNS results of Kasagi et al. (1992): 

0.3 + 0 . 2 ~ -  
co = 1 + 0.5A °5 + 0.07A32 

where 

Okl/2 )2 

~=- 2v Ox~7- ] 

T a b l e  1 The empir ica l  coef f ic ients 

Cl C 2 C3 C4 C5 C6 C7 

- 0.05 fq 0.11 fq fq'S 0.21 - 0 . 8 f  c 0 - 0 . 5 f  c 0.5f c 
f~ f~ fF(S+O)/2 

c~ f~ 

0.667r~{ 1 - e x p [ - 0 . 4 1 5  exp(1.3@/6) ] }  1.1 , f ~ - [  1 - 0.8 exp ( - /~ t /30 ) ]  

1 + 1.8~ 1 +0 .6A2+O.2A 35 

r~ fq fc 

r~ r 2 

( 1 + 0 .0086 TI 2 )1/2 1 + 0.45"q 25 
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The A 2 t ranspor t  equa t ion  

The constitutive equation for bliU j section has introduced in a 
variety of ways the second invariant of aq into the stress strain 
formula. This we have found (using experimental values of A 2) 
had enabled the strongly individual variations of the components 
of uiu j to be realistically captured. However, our initial expecta- 
tion that A 2 could simply be obtained by processing the resultant 
stress field proved to be seriously misplaced: that led to a 
near-wall stress field (and A 2 distribution) strongly at odds with 
the data. Accordingly, it was decided that the best route would 
be to determine A 2 f rom a transport equation. An exact trans- 
port equation for A 2 may easily be obtained by multiplying the 
transport equation for aij by 2ai]. The result may be written: 

DA 2 A2 
2 ~ ( d i j  + Pij + (bij - eij) (3) Dt 2 ~  -(dk + P k -  e) + 

where dij , Pij, qbij, and g.ij are, respectively, the diffusive trans- 
port, shear production, pressure redistribution, and dissipation 
rates of uiu j, and d k, Pk, and e are half the corresponding 
contractions in the turbulence energy budget (the trace of ~bij 
being zero). 

In the above equation, Pij and Pk denote, respectively, the 
mean strain generation rates of u~uj and k: 

[__ ou, ovi ~ aui 
Pij=- - - l U i U k - - + U I U k - - | ;  ek ~ - -b! i lg j - -  

Ox k Ox k } axj 

These terms need no further approximation. For  d)ij and ,2.ij , 
adapted versions of models used in second-moment closure work 
at UMIST have been chosen. For the former, the usual practice 
of separately accounting for turbulence, mean-strain, and wall- 
reflection effects is followed: 

~)ij = d)i)l q- (hi j2 q- d)i w) (4) 

where 

+ij2 = - 0 . 6 (  ~ j - -  1 ~SijP~k ) + 0.3aijPkk (6) 

ou,__( o6 < 3< <1 +?) = - - C , . - - U t U m l - -  

eu~a 6 o l  I 3 ou~ a 6 a  4 
' 8ij - -  --£2w at,,, OX m OX l Ox k "2alm-Ox m c?X t OXj 

3 OUj ('~ff Off ] k  
- 2  aim Ox~ Ox I Ox i ] 

au, ~4 ~4 [ 04 d; 
+ C'2wk Ox~ Ox t Oxm [ Oxi Oxi (7) 

1 0~- Off ] 
30Xq  ~Xq ~ij ) 

In Equation 5 

c; = 1.2 

The quantity A* is a surrogate for Lumley's stress flatness 
factor A (Lumley 1978) defined as 1 - (9/8)(aqaji  -A3) ,  where 
A 3 is the third invariant aijajkaki, and the aij are implicitly 
computed from transport equations. The parameter A takes the 
value zero at the wall where turbulence goes to the two-compo- 
nent limit. 

Now, with the N-LEVM that is the subject of the present 
contribution, one does not get a reliable level of this flatness 
factor merely by processing the predicted stress field using the 
definition of A. Accordingly, as indicated above, a simulated 
form A* is processed. We take 

A* =fAA' + (I --TA)A" (8) 

where A' and A" are alternative approximations of A bridged by 
way of the function fA, which is itself a function of A": 

fA ~ exp( - 20A "2 ) 

A' ---A{1 - e x p [ - k ~ / ( 1  + 24A2)]} 

× {1 - exp[ - (/~,/10)~] } ~ / e  

where A is obtained from the computed anisotropic stress field 
using the definition above. Within the near wall region, A* is 
essentially A', but in the outer part of a boundary layer, particu- 
larly in a complex strain field, A" provides a better approxima- 
tion. For the future, it is to be hoped that, as more experience is 
gained, a simpler form can be introduced. 

Readers may note that Equation 6 is simpler than the usual 
form of ~bij 2 adopted by the UMIST group. This is simply 
because, on multiplying Equation 6 by ai] (viz. Equation 3), 
several terms vanished, while others were found to have negligi- 
ble effect (Suga 1996). The form of +~ is an adaptation of that 
employed by Craft and Launder (1992). However, that form 
contained both unit vectors normal to the wall and wall distance 
--factors  that can have physical significance only for a plane 
surface. Thus, in the present proposal, both these parameters 
were replaced by length-scale gradients. The length f f  is given 
by: 

1 - exp - ( /~J30)  k 3/2 
(9) 

4 = 1 + 3SA~2 

The simpler and more usual form: k3 / 2 / e  is not useful, since 
this levels out (temporarily) in the buffer layer, thus making the 
contribution of (hi ~} negligible in a region where it is greatly 
needed. The coefficients in Equation 7 take the following values: 

C2w = 0.088A2 ; c ' .  = 0.16A2; 

( [ c2, =1.2  1 exp - ( R J 8 0  A? 

The general form of the dissipation tensor is also taken over 
from current second-moment modeling ideas. We take 

2 
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where 

Okl/2 ( ~ Ok 1/2 gin m Ok 1/2 ) 
e~ = 2v f*  ~ x ~  t -~ OXi k OXj 

Okl/2 c)kl/2 ,hUm ~ ] 
+ 2v f*  - -  aij + ax~ Ox m k T e] 

5V Ok 1/2 Okl/2 ~ " - )  
+ l + - - f ~  m 

e OX k OX m 
(11) 

and 

f~ = 1 - {1 - exp[ - (/~,/80)2] }[1 - e x p ( -  20A*15)1; 

L* = 1 - e x p [ - k , / ( 1  + 2 A 2 ) ]  

The quantity f * ,  which is absent from applications of this form 
at second-moment level, is designed purely to improve the way 
the fluctuations normal to the wall vanish as the wall is ap- 
proached. 

Finally, it should be noted that Equation 3 does not contain a 
purely diffusion term; that is to say, a term purely concerned 
with spatial distribution. However, for numerical stability and the 
avoidance of unphysical spikiness in A2, it is expedient to add 
one. Thus, in place of the terms containing diffusive transport 

_ A2 + aij 2Tdk 2Tdq ) 

we adopted the usual generalized gradient transport: 

o [[ I¢ 1 oA2] 
10x  (12) 

where the effective diffusion coefficient for A 2 transport CA2 w a s  

taken as 0.22 fg where the origin and form of fg is discussed in 
the following section. 

Model ing the k and e equations 

The only process requiring approximation in the k equation is 
diffusive transport. Some workers have explicitly distinguished 
transport due to fluctuating pressure and that due to velocity 
fluctuations (Kawamura and Hada 1992; Nagano and Shimada 
1993). While the physical rationale for this strategy is acknowl- 
edged, we have found the specific forms suggested sometimes 
provoked numerical instabilities. Accordingly, our practice has 
been to retain the usual G G D H  model (Daly and Harlow 1970) 
for the total turbulent diffusion: 

[( 0 P~kl -}- CkUkUl'~ d k = Ox k (13) 

The usually adopted value for c~ is 0.22. However, to accommo- 
date the effect of pressure diffusion the coefficient c k is taken as 
0.22 fg with 

fg = 5(/3/~)  1/2 -- 4 ( e / ~ )  1/4 (14) 
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Here k = e - 2 v ( O k l / 2 / O x j )  2 vanishes at the wall (Jones and 

Launder 1972), but beyond the peak in turbulent kinetic energy, 
which, in a simply strained wall flow, occurs at about 12 wall 
units, k and e are essentially equal and the function fg is then 
equal to unity. 

Following Jones and Launder (1972) and many later studies, 
the quantity k is taken as the subject of the transport equation 
because of the convenient wall condition k[w = 0. While closure 
proposals for the ~ transport pay some attention to the exact 
form, there is inevitably a great deal of empiricism in arriving at 
the final form. In the present work, the modelled equation is 
conveniently written: 

Dk k ~2 
=d~ +c~l-~P k -c~2-- ~ +P~3 +S~ (15) 

The second and third terms on the right have the conventional 
source and sink form present in the earliest proposals. There is, 
however, an important difference borrowed from the second-mo- 
ment closure work at UM1ST (e.g., Launder and Tselepidakis 
1993); namely that, in an anisotropic stress field, c~2 should take 
a lower value than in an isotropic field. Correspondingly, C~l is 
reduced. Here the form adopted is 

Cel = 1.0 + 0.15(1 - A * )  

£e2 = 1.92/{1 + 0.7(RJ20)2fA-2max(0.25, A* ) / [1  + (Rt/20)2]} 

The form of the term Pc3 follows earlier suggestions of Jones 
and Launder (1972) and Rodi and Mansour (1993) though now 
generalized to apply to other than a simple shear 

O2Ui O2U/ vv, ak aU i 02Ui 
P~3 = c~3vvt - -  - -  + c~4 (16) 

3X k OXj 3X k OXj k 3x k c~x l Ox k Ox l 

where c~3 and Ce4 are taken as 1.2 and 1.0, respectively. 
Under S~ are included two terms that are designed to remove 

significant anomalies. The usual ~ (or e) equation returns exces- 
sive length scales in separated flow unless some device is em- 
ployed to reduce them. A common practice is to add the so-called 
"Yap-correction" to the source term, which has the effect of 
raising e if the length scale is locally larger than it would be in a 
local equilibrium shear flow. This term, however, contains the 
normal distance to the wall and is known to perform poorly on 
surfaces of complex shape. Accordingly, a replacement has been 
devised. The basic candidate form explored was 

0U/ ad) 1 a(D2 ) 

re5 OX m OX 1 OX m 

where the +s are dependent such variables as k or / raised to 
some power. The term is negligible in a thin shear flow, because 
the mean velocity is then very small in directions with apprecia- 
ble k or f gradients. A second term is added to S~ to balance 
the viscous diffusion in the vicinity of the wall (Kawamura and 
Kawashima 1994). The form adopted 

- ( ~ - ~ )  
k k e x p ( - k ~ / 4 )  
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ensures a balance to first order with v ~2~/Oxf.Thus 

- ( ~ - ~ )  (0Uz 0S a / )  
S~ k g: e x p ( - / ~ / 4 )  + c~5 OXm OXl OXm 

x(OUp Of Ot)k(~-~)  
C~Xq Oxp OXq e (17) 

The presently optimized value of the coefficient c~5 is 35.0. 

A p p l i c a t i o n s  o f  t he  mode l  

Fully tu rbu lent  f lows 

Craft et al. (1995) discuss the application of the present model to 
a number of fully turbulent flows. Here, briefly, to review the 
model performance in that limit, Figures 2-4  show the outcome 
of applying the model to plane channel flow and to two other 

wall flows involving streamline curvature. From Figure 2 it is 
seen that, in plane channel flow, at Re = 13750, the normal 
stress distributions are, indeed, faithfully captured. In particular, 
the normal stress level perpendicular to the wall is satisfactorily 
reproduced, a feature which is crucial to predicting heat transfer 
rates correctly. The shear stress, which alone affects the mean 
velocity distribution, is also mimicked accurately and, in conse- 
quence, the computed mean velocity profile accords closely with 
the DNS simulations. It is noted, too, that the predicted energy 
dissipation rate exhibits the correct variation across the near-wall 
sublayer with a maximum value at the wall and a saddle point at 
y+ = 10. This is a consequence of the novelties introduced to the 

transport equation. Suga (1996) shows other results for pipe 
and channel flow at different Reynolds numbers computed with 
comparable levels of success. 

Figure 3 considers the case of axisymmetric flow through a 
pipe that rotates about its own axis. The laser-Doppler anemom- 
eter (LDA) measured swirl velocity varies in a roughly parabolic 

~+  

W '+ 

V "~+ 

3 . 0 '  : : ', : ', . . . . . . . . .  I . . . . . . . . .  3 . 0 }  i I I p . . . .  r . . . . . . . .  ~ . . . .  i I I I I I l I I I I i I 1 I I 

2.5 /'4"+W ~+ 2"5 I 
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Figure 2 Prediction of fully developed flow in a plane channel at Red--13, 750. Symbols: NDS results, Kim (1989), - -  
computation, present N-LEVM; . . . .  : computation using Launder-Sharma (1 974) EVM 
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manner from the axis to the wall; whereas, any linear eddy- 
viscosity model gives a linear variation (solid-body rotation) once 
the flow is fully developed. It is seen, however, that the N-LEVM 
mimics the measured variation very closely. 

Finally, the mean velocity profile for the fully developed flow 
in a curved channel is shown in Figure 4. The strongly asymmet- 
ric character of the flow measured by Ellis and Joubert (1974) is 
captured much better with the nonlinear EVM than with the 
Launder-Sharma (1974) linear EVM. However, it can be noted 
that, for the flow near the convex surface, the boundary layer is 
too thick, a consequence of the wall shear stress being too high. 
Comparisons with the earlier Eskinazi and Yeh (1956) data 
showed a much smaller anomaly, however, and for that reason, 
no clear signals were provided on whether some retuning (of c 7 
and, possibly, c 5) would have been appropriate. This is a topic to 
which we return in considering the flow around a turbine blade. 

D i f f u s i o n - c o n t r o l l e d  t r a n s i t i o n  on  a f la t  p l a t e  

Two widely examined test cases measured by a team at Rolls 
Royce plc are considered where transition is driven by the 
external free-stream turbulence rather than by the development 
of Tollmien-Schlichting waves. The cases, designated T3A and 
T3B, correspond with nominal free-stream levels of 3% and 6%, 
respectively. 

These two-dimensional (2-D) flows have been computed using 
an elliptic flow solver, STREAM, Lien and Leschziner (1994), 
employing a collocated grid. While the scheme is a general, 
nonorthogonal solver, for these flows a strictly orthogonal mesh 

:::::::::::::::::::::::::::::::::::::::: 
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is adopted. A range of grid densities was explored, and, for the 
final computations, a mesh of 155 (streamwise) × 120 (normal to 
wall) was adopted for T3A and 80 × 70 for T3B. In both cases, 
the near-wall node was located at y+ less than 0.3. A finer mesh 
was needed at the lower free-stream turbulence, where a lower 
level of numerical error  could be tolerated because of the weaker 
"disturbance" signal from the background turbulence. Computa- 
tions began ahead of the leading edge. This was vital, because it 
enabled uniform profiles of k and s to be assigned. (If one starts 
computations on the plate itself, the predicted transition point is 
strongly dependent  on the assumptions made about the way k 
and e vary across the boundary layer.) As a consequence, a 
considerably reduced streamwise internodal spacing was needed 
in the vicinity of the leading edge of the plate, Figure 5. The 
actual upstream values of k and e were chosen to produce 

broadly the correct initial decay of k with distance in the free 
stream, Figure 6. The initial condition assigned to A 2 was zero, 
since, in the absence of mean strain, the values of all the aij 

given by the N-LEVM formula, Equation 1, would be zero. This 
isotropic stress field does not quite accord with the experimental 
data but, at this level of modeling, such transport effects cannot 
be accounted for. 

The variation of the computed transition indicators, the skin 
friction coefficient cf, and the shape factor H is shown in Figure 
7 compared with the measurements  and the linear k - a  model of 
Launder and Sharma (1974). This last scheme had been found by 
Savill (1993) to be the most successful of the linear EVMs in 
predicting this type of flow, although this conclusion had been 
reached from calculations adopting parabolic solvers. Evidently, 
both schemes do predict a transition broadly as indicated by the 
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data. However, the variation of skin friction computed with the 
N-LEVM predicts an overshoot following transition in line with 
experiment. In contrast, the linear EVM, after the transitional 
region, gives values of cf below the fully turbulent line. Minor 
improvements from adopting the nonlinear scheme are also 
evident in the shape factor, particularly at the higher turbulence 
level. For the higher free-stream turbulence, the distribution of 
the shear stress and the rms turbulence intensities are shown in 
Figure 8 at four representative positions in the transition pro- 
cess. Generally, the build-up of the turbulent shear stress is well 
captured except that, toward the end of transition, the measured 
turbulent shear stress is some 35% below the prediction. It 
seems probable that this is an experimental error, since there is 
close accord with the independently measured wall shear stress. 
The turbulence intensity distributions broadly capture the build- 
up of the individual fluctuations, although, in the early stages of 
transition, the predicted rise of turbulence near the wall is not as 
rapid as the experiments indicate. As with the channel flow 
considered earlier, any linear EVM can achieve no discrimina- 
tion in the turbulent fluctuations in different directions. 

Turbulent impinging jet  

While purists might argue whether this case is strictly one of 
diffusion-controlled transition, it is unquestionably closely re- 
lated to it; moreover, it is manifestly relevant to by-pass transi- 
tion on a turbine blade to be considered later. As indicated in 
Figure 9, fully developed turbulent flow from a pipe impinges 
normally onto a smooth wall, producing an axisymmetric radial 
wall jet. When the jet discharge is close to the wall, (H/D= 2.0), 
the mixing layer formed at the edge of jet does not impinge 
directly onto the plate, but the larger scales and enhanced 
turbulence levels in the mixing layer lead to a strong rise in 
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Nusselt number at a radius of about 2D from the stagnation 
point. As H/D is increased, the link to diffusion-controlled 
transition becomes more tenuous: for example, at H/D= 6, the 
secondary peak in Nusselt number disappears. Nevertheless, for 
completeness, that limit is also examined. 

First, Figure 10 shows the measured turbulence intensity in 
the direction of the mean velocity vector, which is approximately 
what the single normal hot-wire will have recorded (Cooper et al. 
1993). At r/D= 0 this amounts to the variation of turbulent 
velocity along the stagnation streamline. As is well known, any 
linear EVM leads to excessive normal stress levels approaching a 
stagnation point due to the inappropriate stress-strain connec- 
tion for an irrotational stagnation flow implicit in the basic 
constitutive equation. The nonlinear EVM, however, does very 
much better. Once the flow has been deflected to flow radially 
outward (so the stresses are principally determined by the pri- 
mary shear, oU/ay), there is less difference between the linear 
and nonlinear results. However, the N-LEVM returns far more 
realistic levels of shear stress, and, as a consequence, the growth 
of the mean velocity profile (in the form of a radial wall jet) is 
significantly less than with the linear EVM, Figure 11. It is noted 
that between the stagnation point and r/D = 2 the near-wall 
fluctuating velocity levels rise from about 0.05U h to 0.2U h repre- 
senting at least a tenfold increase in k. It is this rise that creates 
the increase in Nusselt number referred to above and shown, 
now, in quantitative terms, at two Reynolds numbers in Figure 
12. It is noted that the nonlinear EVM achieves more realistic 
levels of Nu at the stagnation point and, as a result, a secondary 
peak in Nusselt number is, indeed, predicted. One less satisfac- 
tory feature of the prediction is that the dependence of this 
second peak in Nusselt number on Reynolds number is not 
correctly captured (the experiments show very nearly a variation 
as Re°7; whereas, the N-LEVM indicates the second peak varies 
as Re°"~). This is something that, for the future, needs re-examin- 
ing. It is worth remarking that our earlier two-equation N-LEVM, 
which employed the "Yap correction" in the e equation, showed 
a smaller error of this type, Craft et al. (1993, 1996). Finally, for 
interest, Figure 13 compares the profiles of the flatness factor A 
obtained from processing the stress field with that from solving 
the A 2 transport equation (A*). Both formulations correctly 
lead to a zero value at the wall but, inevitably, the directly 
processed value from Equation (1) leads to (very nearly) the 
isotropic value of 1.0 in the wall jet at the point of velocity 
maximum. The value A*, computed from the A 2 equation, does 
not exhibit this anomaly: indeed, precisely because the A 2 equa- 
tion contains transport agencies, A* displays more the type of 
behavior that must actually occur in this flow. 

As a footnote to these predictions, Figure 14 considers the 
case where the jet discharges six diameters above the plate. In 
that case, the turbulence levels at the stagnation point are higher 

(u' + 

i i I I I I * I * [ I I I I I I I * I 

~ .  r / D =  1 O0 1,0- 

0.5 \ 

. . . . . . . .  ~ _ ~  : ~ - ~  
0.0 q ~ ~ , I i , * ; ', ; ', ', : , , ', : , 

0.0 0.1 0.2 0.3 0.4 

I I I I I * I I I [ I I I I ~ I I I I 

1.o. - r / D =  2 . 0 0  

0 . 5 . ~  

o o 
0.0 0.1 0.2 0.3 0.4 

I I I I I I I I I I ~ t ~ I I I I I I 

~.o- r / D =  3 . 0 0  

0.0 
0.0 0.1 0.2 0.3 0.4 y/D 

Figure 11 M e a n  radial  ve loc i ty  f ie ld  in t u rbu len t  imping ing 
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because the axisymmetric mixing layer springing from the jet lip 
has merged to the jet axis. There is, in consequence, a rapid rise 
(transition) in wall turbulence, the peak near-wall level being 
reached at r/D= 0.5. There is, thus, no secondary peak in 
Nusselt number evident. Overall, the N-LEVM predicts the 
observed mean-field behavior very successfully, although the 
rather uniform level of the streamwise turbulence intensity out 
to values of r/D of 2.0 is not particularly well captured. 
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Flow around a turb ine blade 

The flow around a turbine blade can be regarded as a combina- 
tion of a boundary layer and a stagnation flow so the simpler test 
cases considered above may be seen as an appropriate pre-en- 
quiry. The test cases chosen were a sequence at the lowest exit 
Mach number 0.78 from the experiments of Nicholson et al. 
(1982) of flow through a linear, "low-stagger" cascade of rotor 
blades. These workers had confirmed that the flow was 2-D over 
the central 60% of the flow. The nominal free-stream turbulence 
intensity was 4%, and experiments were made at the design flow 
rate (which gave a chord Reynolds number of 1.113 × 106 based 
on exit velocity) and at flow rates above and below design 
(Re c = 0.557 × 106 and 1.67 × 106). Further details of the experi- 
ments are provided in Nicholson et al. 

The solver adopted was originally coded for incompressible 
flows and while, as noted, the lowest Mach number was selected, 
nevertheless some adaptations were needed for this test case. 
Firstly, density variation effects needed inclusion in the 
pressure-correction equation to account for the fact that now a 
modification to the pressure results in updates to both velocity 
components and the density. Moreover, in solving the thermal 
energy equation, viscous dissipation terms were added. The local 
density itself was computed from the ideal-gas equation of state, 
while the dependence of the dynamic viscosity and thermal 
conductivity on temperature was included. Finally, in the turbu- 
lence modeling equations, the strain tensor Sij has been replaced 
by the traceless form S~j where 

1 
S~s --- Sis - ~ ~is Skk 

This was essential, otherwise the contraction akk would not be 
zero. 

Figure 15 shows the mesh adopted, a 320 (circumferential) × 
100 nonorthogonal 0-type grid generated by the smoothed 
"trans-finite interpolation" method described in Thompson et al. 
(1985). This mesh type led to acceptable near-wall cell configura- 
tions including the stagnation and trailing-edge regions. A defect 
with this gridding arrangement arises in the wake region where 
there is inevitably appreciable flow-to-grid skewness in the wake. 

Prediction of turbulent transitional phenomena: T. J. Craft et aL 
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This made it difficult to achieve fully grid-independent results, 
even though a higher-order convection scheme was adopted. 
Fortunately, in the present application, attention was focused on 
the behavior on the blades, and, since there was no downstream 
flow recirculation, any imperfections in resolving the wake did 
not feed back upstream. 

Computations of the equivalent isentropic surface Mach num- 
ber M s for the design Reynolds number are shown in Figure 16. 
On the suction surface, the flow accelerates up to 70% chord 
before decelerating modestly, while, on the pressure surface, a 
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mild acceleration over most of the blade becomes markedly more 
severe toward the trailing edge. The N-LEVM evidently captures 
the variation of M~ more successfully than the linear model, 
where the stagnation region followed by the strong acceleration 
leads to excessive turbulence energy levels (Figure 17). Note that 
energy generation arises from the severe normal straining of the 
flow both in the stagnation zone and in the accelerating region. 
The energy generation by such normal straining is: 

and with a linear EVM this term gets represented as: 

ax ) 

(neglecting the effect of density gradients). This is what leads to 
the very high levels of k over the downstream portion of the 
blade, a feature that is absent when the N-LEVM is adopted. 

While no direct measurement  of turbulence energy are avail- 
able, we can infer that the high predicted turbulence levels are 
spurious from the excessive levels of heat transfer generated with 
the linear EVM shown in Figure 18. A behavior much closer to 
that measured is obtained with the N-LEVM. Nevertheless, 
while agreement  with experiment is excellent on the concave 
pressure surface, the computed boundary layer on the suction 
surface undergoes transition too soon, at all Reynolds numbers. 

At first the possibility that the input initial turbulence level 
was too high was considered a possible source of error, or, that 
the initial level of e was assigned a too small value. Accordingly, 
a further calculation was made with s o increased by a factor of 5 
and k o decreased by 25% (this, we felt, was the maximum likely 
errors in the initial values present in the experiments). In fact, 
this change had no significant effect on where transition oc- 
curred. It was, therefore, concluded that the model, as presented, 

tends to give a too rapid transition on a convex surface. Looking 
back to the fully turbulent  flow through a curved channel (Figure 
3), it is evident that there, too, on the convex surface, there was 
an insufficient damping of turbulent transport. Evidently, there- 
fore, a modest recalibration of the coefficients in the stress-strain 
equation seems to be needed to see whether this anomaly on 
convex surfaces can be eliminated or at least reduced. Notwith- 
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s t and ing  this  weakness ,  however ,  the  cubic non l i nea r  E V M  evi- 
dent ly  gives a m u c h  m o r e  sat isfactory account  of  the  var ia t ion of  
hea t  t ransfer  coeff ic ient  a r o u n d  the  b lade  sur face  that  the  l inear  
model .  

Concluding remarks 

A new non l inea r  eddy-viscosity mode l  has  been  p r e s e n t e d  tha t  is 
des igned  to hand le  nonequ i l i b r i um low-Reynolds  n u m b e r  phe-  
n o m e n a ,  especially tha t  o f  by-pass  t rans i t ion  b e n e a t h  a t u rbu len t  
external  s t ream.  T h e  novel  f ea tu res  o f  the  mode l  in compa r i son  
with existing N - L E V M s  are  
(1) the  inclusion of  cubic con t r ibu t ions  f rom the  m e a n  strain and  

vorticity t ensors  tha t  enab le  the  s t ress  field to be m a d e  
sensit ive to s t r eaml ine  curvature ;  and  

(2) the  use  of  a t r anspor t  equa t ion  for the  s t ress -an iso t ropy  
invariant ,  A 2, which  enab les  the  no rma l  s t resses  in the  
near-wall  sublayer  to be  far be t te r  resolved.  

Desp i te  the  far m o r e  e l abo ra t e  const i tu t ive  equa t ion  and  the  
solut ion o f  the  extra  equa t ion  for A2,  ou r  exper ience  is tha t  the  
c o m p u t i n g  t ime requ i red  is normal ly  only about  20% m o r e  than  
for a low-Re l inear  k-e  model .  

Moreover ,  appl ica t ions  have  shown  the  mode l  to be far m o r e  
reliable than  the  linear E V M ,  part icular ly in imping ing  flows and  
in o the r  s i tua t ions  where  n o r m a l  s t ra in ing  is a ma jo r  con t r ibu to r  
to s t ress  genera t ion .  A defect  in the  mode l  has  e m e r g e d  on 
convex surfaces ,  however ,  whe re  insuff icient  d a m p i n g  of  the  
s tress  field results.  Thus ,  for the  fu ture ,  a careful  recal ibra t ion of  
the  empir ical  coeff ic ients  s e e m s  desirable.  If by-pass  t rans i t ion  
on tu rb ine  b lades  is the  pr inciple  flow of  interest ,  the  types of  
strain field arising in such  flows shou ld  especially be t aken  into 
account  in any recal ibrat ion.  
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